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This paper outlines a model parameter updating technique for a new method of model validation using a
modified model reference adaptive control (MRAC) framework with Bayesian Networks (BNs) . The model
parameter updating within this method is generic in the sense that the model/simulation to be validated is
treated as a black box. It must have updateable parameters to which its outputs are sensitive, and those outputs
must have metrics that can be compared to that of the model reference, i .e ., experimental data . Furthermore, no
assumptions are made about the statistics of the model parameter uncertainty, only upper and lower bounds
need to be specified .

This method is designed for situations where a model is not intended to predict a complete point-by-point time
domain description of the item/system behavior ; rather, there are specific points, features, or events of interest
that need to be predicted. These specific points are compared to the model reference derived from actual
experimental data . The logic for updating the model parameters to match the model reference is formed via a
BN . The nodes of this BN consist of updateable model input parameters and the specific output values or
features of interest . Each time the model is executed, the input/output pairs are used to adapt the conditional
probabilities of the BN. Each iteration further refines the inferred model parameters to produce the desired
model output . After parameter updating is complete and model inputs are inferred, reliabilities for the model
output are supplied . Finally, this method is applied to a simulation of a resonance control cooling system for a
prototype coupled cavity linac . The results are compared to experimental data .
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Abstract

This paper outlines a model parameter updating technique for a new method of model validation using a
modified model reference adaptive control (MRAC ) framework with Bayesian Networks (BN) . This
method is designed for situati ons where a model is not intended to predict a complete point-by-point time
domain description of the item/system behavior ; rather, there are specific points, features , or events of
interest that need to be predicted . These specific points are compared to the model reference derived from
actual experimental data . The logic for updati ng the model parameters to match the model reference is
formed via a BN . The nodes of this BN consist of updateable model input parameters and the specific
output values or features of interest . Each time the model is executed , the input/output pairs are used to
adapt the conditional probabilities of the BN. Each iterati on further refines the inferred model parameters
to eventually produce the desired model output . This method is applied to a simulation of a resonance
control cooling system for a prototype coupled cavity linac . The results are compared to experimental data .

Introduction

The block diagram in Figure 1 illustrates the model parameter updating within a new
method by (Treml 2004 ) for model validation using a modified model reference adaptive
control (MRAC) framework with Bayesian "Belief" Networks (BNs or BBNs) . BBNs
(as in Figures 2 and 3 ) are acyclic graphical networks representing casual relationship s
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Figure 1 . Block Diagram of Model Parameter Updating Metho d
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among variables . The directed acyclic graph represents qualitative dependencies among
random variables, and the conditional probabilities quantify these dependencies . Within
the graph, nodes represent the modeled variables and directed edges (arrows) represent
the causal (conditional) relationships between the modeled variables . If information is
known about a variable, it is referred to as evidence and evidence is introduced to the
BBN by instantiating that node with the evidence . The evidence is then propagated
throughout the BBN, inferring new probabilities about the remaining nodes/variables
(Pearl 1988) .

The model parameter updating within the MRAC/BBN method is generic, in that the
model/simulation to be validated is treated as a black box. This implies that any type of
model/simulation can be validated using this procedure provided it has updateable
parameters to which its outputs are sensitive and that those outputs have metrics that can
be compared to that of the model reference, i.e., experimental data . The black box model
can be of a single item, i .e . a computer chip, beam, tire, bearing, or spherical steel shell,
or a complex system, i.e. a chemical process, car, civil structure, or cooling system .

The most probable model inputs are inferred when the model updating BBN (MUBBN)
is instantiated with desired outputs, i.e . the model reference . The model reference is in
the form of specific points, features, or events of interest that need to be predicted, such
as point of failure, rise/settling times, a steady-state value, or a particular statistic . These
predictions or points of interest (P .0 .I .) are the basis for the validation metrics . The
MRBBN must infer them, the model to be validated must calculate them, and the P.O .I .
must be measured or observed in the validation experiments (Treml 2000) . These inferred
inputs are fed into the computer model, and the corresponding outputs are then compared
to the model reference . If the model outputs are within a pre-described tolerance of the
model reference, then the process or parameter updating loop is stopped . At this point,
the model is validated for the set of conditions from which the model reference was
inferred .

Structure and Training of MUBB N

The logic for the parameter updating process is provided by the MUBBN . The MUBBN
is composed of discrete nodes that represent the P.O.I . of the model/experiment, the
uncertain updateable model parameters, and qualitative nodes . The general form of the
MUBBN is shown in Figure 2 . The qualitative nodes can represent any subjective or
qualitative aspects of the model response or experimental outcomes that the modeler has
observed to be useful in the predictive process . A spread of model runs are made to
obtain model input/output pairs used to train the conditional probabilities for the
MUBBN. These conditional probabilities are generated using the EM (expectation
maximization) algorithm developed by Lauritzen (1995) in conjunction with the MUBBN
node/edge structure and the table of model input/output set pairs . A key point of this step
is that no assumptions are made about the statistics of the model parameter uncertainty.
An acceptable range for each variable must be made, but nothing more . This is a
departure from many model validation techniques, where the tendency is to arbitrarily
assume that the parameter uncertainty is Gaussian, then base the validation upon that
assumption .

Tr•eml, C .A ., Ross, T .J. 2



Wt ) r W2

01 02

WN } Model Reference Evidence

Desired Model Output Node s

Inferred Model Inputs

zt xJ • . . xM

. . . Inferred Model Quality Node s

Figure 2 . General Model Reference BBN (MUBBN )

The training runs for the MUBBN are like a Monte-Carlo process, all possible continuous
combinations of model inputs are not represented, hence, the need for an iterative
process. Each time the model output P .O.I . are unsuccessfully compared to the model
reference, the inferred model parameter input bins are "re-gridded" in a specified manner,
the model is run, and more model input/output pairs are generated . These input/output
pairs are used to refine or adapt the conditional probabilities within the MUBBN .
Eventually this learning refinement converges to a solution, provided an input parameter
combination exists that can produce the desired model outputs within the specified
tolerances. After model inputs are inferred that yield a set of model outputs within the
specified tolerances, the bin widths and inferred probabilities of these input/output
vectors can be used to make statements about the reliability of the model predictions .

Parameter Updating Algorith m

Once trained , the model output nodes of the MUBBN are instantiated with the model
reference or desired outputs . For each iteration of parameter updating, the proposed input
set [Z], is used to generate the model output [W], for testing against the model reference

{W} . Each time this is done the model input /output variable pair [Z] .,[W]i is

introduced as the bin evidence pair {Z} . , {W} . to the MUBBN and used to update or

adapt its probabilities . Probability adaptation also takes place when grid -refinement runs

are made . The MUBBN nodes (W 1, W2,• • • WN) are divided into discrete bins (wo )k

where : (w,. )k = {wj : (w . )Lk <_ wi < (wi )III is the k`" bin of the node Wj from Figure 2 .

If (w;) E (1vj ) ' , then (wJ) is instantiated . This bin evidence (w;) is then propagated

through the MUBBN, and probabilities are inferred for each of the node states for all the

input parameter nodes (Z1, Z2, • • • ZM) . This inferred input information {Z} is

Treml , C.A., Ross, T.J. 3



, where the binindicated by the "^" symbol and written: {Z}
= {[21][22] . . .[2M R

set 12 1 corresponds to the updateable model input parameter, zi . Furthermore, the bin

set and accompanying probabilities or inferred beliefs are written :

(i
1

, prob (\z~ l1 I 1W }r )

[2 ] _ `i j )2 , prob(\ij)2
}, )

[ ( )??Y prob ((Zj
)'' I { } , ) ]

;

where m j is the number of bins or node states for the input parameter z . , and i implies

the i`'' iteration of {Z} . The output bin (zj )' is the k" bin for z . , i .e .

(z
j
)k =

I z i
: (z

j
)LA <_ zi < ( zi )Uk I, where Uk and Lk indicate the upper and lower bounds

of the bin k, respectively . The overall range of zi is I zi : (zj ) r 1 <_ zi < (zf )UmJ . Once

the most probable model input bins [(z,) , (z2) • • • (zM) ] are determined,

(Z j)*
= [(zj)k :B max { prob ( (z j )" I {fl, )} ; k =1, 2, • • • mj ] , this information is

converted to a single set of model input values , [Z] . = [z,, z2 , • • • zM ], . Each value zi' is

chosen as the midpoint of the corresponding most probable input bin interval ~z j )* to

form the input set [Z] . = [z,*, z2*, • • • z,*, ] . Next , the simulation is run with the updateable

model parameters set to these values, and the outputs [W], are generated . The model

outputs [W], are then tested to determine whether they are within the bin or tolerance of

: wk E (wk ), = 1 wk : [(wk)J1 <wk <(wk)rJ1 ]} Vk ?the model reference 1 W 1 r 111

If this test is true , then the iteration is stopped provided the input parameter grid has been
refined to re flect the model input parameter uncertainty . If the test is not true, then the
MUBBN is updated or adapted and iteration is continued .

Application of MRAC/BBN Algorith m

MRAC/BBN method was applied to a model of a resonance control cooling system
(RCCS) for a coupled cavity linac (CCL) . For a CCL, resonant frequency is primarily a
function of the geometry of the copper cavities and couplers . As RF power is dissipated
in the cavity walls, the copper will heat, then expand , and its resonant frequency will
decrease . This frequency shift is controlled by the closed loop RCCS . To apply the
parameter updating scheme , one set of experimental data (shown in Figure 4) was used as
the model reference P.O.I . for a specific set of operating conditions . The P .O.I . values

Treml, C .A ., Ross, T .J. 4



T_/o= 29 .95°C, T _ hi = 29.20°C, and t Peak Peak = 90 sec . shown in Figure 4 are the

steady-state surface temperature of the cavity at high and low power, and the time at
which the surface temperature peaks after a power loss, respectively . The bin widths
(tolerances) and ranges for the reference P .O.I . are shown in Figure 3. The

corresponding, updateable model input parameters are [Z] =[hA_/o, hA_hi, k] ., that

are heat transfer coefficients at low and high power and a term effected by the amount of

cooper heated, respectively . Their desired uncertainty bounds were chosen at -5% of

their anticipated final values : t (hA_ /o) = 50, A(hA_ hi) = 500, and A(k)=2000 . A

MUBBN for the RCCS model was formed using the aforementioned model inputs, model
reference P .O.I ., and a model quality node . A working HUGIN (1999) depiction of the
RCCS MUBBN is shown in Figure 3, along with the parameter bins and probabilities for

each input and output variable and the model quality node .

1_LA rifl El J 101 v y i c J v q ~ I

(w,)=(T_to)= 29 .95±0 .005°C=:>(29 .945 5 T_/o<29 9
Law

{wz}=~T_hi>=29 .20±0 .01°C=>{29 .195 T_hi<2921 }

Peak)= 90 .0±0 .5 sec .=> {89 .55t_Peak<90

77

Figure 3 . MUBBN for RCCS Prototype CCL Model Validatio n

Initially, the unvalidated model deviated dramatically from the experimental data, as
illustrated it Figure 4 . After four complete iteration steps consisting of approximately
350 model runs, parameter updating was successful in finding an acceptable set of model
input parameters to produce a model output response within P .O.I . tolerances. The most

probable values for the uncertain model input parameters are : hA_ /o = 3,225 ± 25 ,

hA_hi=10,250±250, and k=38,000±1000 . Given these inputs with their specified

uncertainty bounds, the model output will be 29.19 s T _ hi < 29.21 °C (with 87 .3%

reliability), 29 .935s T_ /o < 29.955°C (with 98 .6% reliability) and 78 .-5t _ Peak < 93 sec .

The T _ hi and T _ to P .O.I . matching can be considered a success from an engineer's

standpoint . However, t_Peak indicates that the tolerance on t_Peak is not obtainable

given the current model parameter uncertainty .

Treml, C .A ., Ross, T .J. 5



Despite the fact that updated input parameters now yield a model output response that
matches all specified P .O.I . within tolerance, obviously, there remains some modeling
error that can be corrected, or in this case, some un-modeled dynamics that can be added .
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Figure 4 . Results of Parameter Updating Compared with Experimental Data

Conclusions

As applied to the RCCS simulation, the MRAC/BBN validation method functioned
successfully . The parameter updating algorithm produced a set of input parameters with
a specified uncertainty bound that resulted in a model output response whose P .O .I . were
within model reference tolerances. Also, reliabilities for the specified tolerances of
model outputs given the input uncertainty bounds were inferred by the MUBBN .
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